
Eur. Phys. J. B 60, 493–498 (2007)
DOI: 10.1140/epjb/e2008-00010-8 THE EUROPEAN

PHYSICAL JOURNAL B

Scaling and self-similarity in Pb1−xFexS nanoparticle films

V. Banerjeea

Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

Received 18 June 2007 / Received in final form 15 November 2007
Published online 16 January 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. This paper addresses the issues of scaling and self-similarity in typical nanoparticle films. The
role played by microscopic processes contributing to growth on these issues is probed. While we perform
this investigation for a specific system viz., Pb1−xFexS nanoparticle films for clarity of the procedures,
the analysis is general and can be applied to a variety of systems obtained using different deposition
techniques.

PACS. 61.43.Hv Fractals; macroscopic aggregates – 68.55.A Nucleation and growth: microscopic aspects
– 68.55.J Structure and morphology; thickness; crystalline orientation and texture

1 Introduction

The formation of nanostructures is a complex process in-
volving competition between nucleation and growth of
particles. These processes occur with characteristic rates
governed by experimental conditions. They affect the mor-
phology of the evolving structures to varying degrees.
A simple picture of a typical growth process can be visual-
ized on a two dimensional substrate as follows. Monomers
are dropped with a specified flux rate at random positions
on the substrate. Each monomer, as revealed by atomic
scale measurements, is either adsorbed by the substrate
or undergoes a random walk on the substrate until one
of the following occurs [1,2]. It finds an existing particle
(of two or more monomers) and gets incorporated leading
to growth or finds diffusing monomers and nucleates to
yield a new particle. Not only small particles, but large
particles comprising of a several hundred monomers are
also found to be mobile, but with a lower mobility. Fur-
ther, the possibility of loss of mass due to desorption of a
monomer or chipping of a bit of mass from a particle have
also been observed. As a result these structures are con-
tinuously evolving and highly non-equilibrium in nature.

The random deposition of monomers and the Brown-
ian trajectories traced by particles due to surface diffu-
sion introduces a strong element of stochasticity in the
above system. Growing surfaces governed by stochastic
processes are often known to yield structures having no
characteristic length or time scale [3,4]. One procedure
for this identification is provided by concepts from scaling
theories [5,6]. It is a feature of objects or laws that do
not change if length-scales (or energy scales) undergo a
dilation. Mathematically, scale invariance refers to an in-
variance of individual functions or curves under a discrete
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set of dilations. The requirement for a function f(x) to be
invariant under some scale factor α is f(x) = α−β f(αx)
where β is the scaling exponent. If different data sets can
be made to collapse on a universal curve with the help
of the proposed dilation or scaling function f(x), they are
said to exhibit scaling. The data sets then rely on the same
mechanisms for their formation and the evolving system
is said to be scale-invariant.

A closely related issue to scaling is that of self-
similarity. The later implies an invariance under an
isotropic transformation such as a simple dilation. If we
consider an object comprising of a set of points R =
(x1, x2,....), a dilation with a scaling factor α changes the
coordinates to αR = (αx1, αx2,....). The set so formed
is self-similar if it is invariant under this transforma-
tion. Self-similarity is strictly found in deterministic frac-
tals such as the Koch curve or the Serpienski gasket in
which, the rescaled system is identical to the original sys-
tem. Natural structures such as growing interfaces on the
other hand exhibit statistical self-similarity within a cer-
tain regime of the parameter space due to the inherent
randomness in their contributory process. Thus only sta-
tistical quantities are the same for the rescaled and the
original system.

Another procedure for investigating self-similarity in a
system is obtained by computing quantities which are typ-
ically used to characterize fractals. The most commonly
computed quantity is the fractal dimension [7,8]. A non-
integer value implies fractality and hence self-similarity.
There are many definitions of fractal dimension such as
the box counting or the Haussdorf dimension, the infor-
mation dimension and the correlation dimension to name
a few. We find that the later, usually calculated in the con-
text of strange attractors, is especially useful to identify
self-similarity in growing structures. Further, the value of
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the fractal dimension is known to have a significant influ-
ence on the dynamics of growth process.

In an earlier publication we proposed the underly-
ing microscopic growth mechanisms contributing to the
formation of Pb1−xFexS nanoparticle films [9]. We also
found that the particle-size distributions corresponding to
different flux rates exhibited scaling hinting towards the
presence of self-similarity in the growth process. A more
relevant quantity for the identification of scale-invariance
though, is the inter-particle separation r. Hence, in this
paper, we concentrate on the calculation and analysis of
the probability distributions P (r), which give the condi-
tional probability of finding a particle of any size separated
by a distance r from a specified one, corresponding to
varying flux rates. The main results of this study are sum-
marized below. The distributions P (r) are bimodal for all
the values of flux considered indicating the presence of two
dominant growth mechanisms in the system. The cumula-
tive probability distributions constructed from the above
separation distributions exhibit scaling. We then check
for self-similarity using transmission electron microscopy
(TEM) images of the Pb1−xFexS depositions. The cumu-
lative probability distributions readily provide the corre-
lation dimension of the nanoparticle films. Its non-integer
value of 1.72 ± 0.01 reiterates self-similarity. We identify
the experimental conditions under which scaling and self-
similarity are expected to arise. Arguments have been de-
veloped to explain the experimental observations in terms
of a diffusion-aggregation model introduced earlier in [9].
Thus the present study is an effort to obtain further in-
sight on the growth of Pb1−xFexS nanoparticle films to
supplement the results of [9].

The paper is organized as follows. The experimental
procedure for obtaining Pb1−xFexS nanoparticle films is
briefly described in Section 2. The scaling analysis is per-
formed in Section 3. Aspects of self-similarity and evalu-
ation of the correlation dimension are attended to in Sec-
tion 4. A short conclusion is provided in Section 5.

2 Experimental procedure

The procedure for obtaining Pb1−xFexS nanoparticle films
is outlined in detail in [9]. However the key steps are re-
produced below for the sake of completeness. A chemi-
cal bath deposition (CBD) method was used to obtain
ternary Pb1−xFexS nanoparticle films on a silicon sub-
strate. A typical medium in the CBD process consists of
one or more metal salts, a source for the chalcogenide X
(= S, Te, Se) and a chelating agent to limit the hydrolysis
of the metal ion and impart stability to the bath which
would otherwise undergo rapid hydrolysis and precipita-
tion. More specifically, aqueous solutions of (M/25) lead
acetate, (M/25) ferrous chloride and (M/20) thiourea, all
maintained at 30 ◦C and stirred continuously, were used to
obtain Pb0.5Fe0.5S semiconductor films. Optimized quan-
tities of precursors to achieve a specific composition of x
were obtained by analyzing x-ray fluorescence data from
test films grown under identical conditions. The chemi-
cal reaction which results in the production of Pb1−xFexS

“monomers” is described below:

(1 − x)Pb(CH3COO)2 + xFeCl2 + (NH2)2CS
NH4OH−→

Pb1−xFexS + CH3COOH + NH4Cl.

One important parameter expected to affect the growth
process is the rate of formation of Pb1−xFexS monomers
or the incident flux on the substrate. In the above ex-
periment, this was controlled by the availability of S2−
ions produced by the hydrolysis of thiourea in the basic
medium. An increase in their concentration was achieved
by increasing the pH of the chemical bath by the addition
of liquor ammonia. The later provides excess (OH−) ions
which consequently increases the concentration of S2− ions
and hence Pb1−xFexS monomers. Films with three differ-
ent pH values of the chemical bath, viz., 9.25, 10.0 and
10.75 were grown for optimized times to obtain a thickness
of approximately 30 nanometers. A TEM of the deposited
films was carried out in a plane-view mode using a Philips
CM20 instrument to study features related to the growth
process. These micrographs are shown in Figures 1a–1c
in [9]. We refer the reader to these to avoid replication.

3 Scaling analysis

We now proceed to obtain probability distributions of the
inter-particle separations in the deposited films. This in-
formation is obtained from the above TEM micrographs
by the following procedure. As we are interested in aspects
related to scaling, we do away with scaling-irrelevant fea-
tures such as details of particle shapes by suppressing the
structure of the particles and resorting to a “point par-
ticle” representation. These are shown in Figures 1a–1c
for the corresponding TEM micrographs of [9] for three
values of pH = 9.25, 10.0 and 10.75 that were consid-
ered. Such a representation preserves information regard-
ing density, placement and regions devoid of particles. We
also mention here that the point particle model has been
the starting point of several theoretical descriptions of epi-
taxial growth, the most widely used and analyzed being
the Smoluchowski rate equation approach [10]. The inter-
particle separation r was determined from scanned im-
ages of the above point representations by writing a sim-
ple computer program. Each point was considered and its
distance of separation from every other point in the point
particle representation was computed. Thus if the number
of points in the representation is N , a total of N(N − 1)
separations were obtained. These were then binned appro-
priately to find the probability P (r) for a pair to have an
inter-particle separation of r.

The above procedure was carried out for all the three
point particle representations in Figures 1a–1c for the
three pH values. The corresponding probability distribu-
tions are shown in Figure 2. The distributions are bimodal
in nature. Multimodal distributions have been observed in
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Fig. 1. Point representations of the TEM images of Pb0.5Fe0.5S nanoparticle films for three different values of pH equal to
(a) 9.25, (b) 10.0 and (c) 10.75.
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Fig. 2. (a) Probability distribution of inter-particle separation
in Pb0.5Fe0.5S nanoparticle films for the three different values
of pH of the chemical bath. The inset shows the distribution
of particle sizes in the nanoparticle films for the corresponding
values of pH.

many growth processes, especially in the context of col-
loids, and have been attributed to the presence of vari-
able growth mechanisms [11]. In the present context, the
bimodal distribution is expected to result from two dom-
inant particle growth mechanisms which we shall identify
shortly. We wish to point out here that the broadening
of probability distributions and the increase in the aver-
age inter-particle separation with pH is not an effect of the
later, but has more to do with the larger scale of the TEM
images corresponding to samples with higher values of pH.
The respective scales are indicated in Figures 1a–1c. We
have checked that these distributions collapse onto a mas-
ter curve when viewed on the same lengthscale. This in-
variance amongst distributions corresponding to different
pH values is a consequence of self-similarity in the growth
process and is addressed in Section 4.

In our earlier studies, we found the following model
suitable to describe the experimentally observed features

of nanoparticle growth in Pb1−xFexS and Pd deposi-
tions [9,12]. The two primary mechanisms which we as-
sumed were (i) irreversible adsorption of monomers with
a rate F on the substrate and (ii) their subsequent diffu-
sion and aggregation upon collision to form larger parti-
cles. In order to mimic the experimentally observed asym-
metrical and peaked particle size distributions N(m), we
found that it is essential to assume a power law depen-
dence of diffusivity Dm on the mass m of the particle,
i.e., Dm ∼ m−µ. A mass-independent diffusibility corre-
sponding to a value of µ = 0 resulted in a steady state
size distribution as a time independent power law N(m)
∼ m−τ with the exponent τ = 1.45 ± 0.01. On the other
hand, a value of µ > 1 implying higher mobility for smaller
particles as compared to larger particles, reproduced many
of the qualitative features of the experimentally observed
particle size distributions. These observations were made
in both the Monte Carlo simulations as well as the mean
field analysis of the Smoluchowski rate equations of the de-
scribed model. The other microscopic mechanisms which
could affect growth were desorption of a monomer or
fragmentation of a bit of mass from the particle. How-
ever scanning tunneling microscopy measurements at near
room temperature have revealed that the rate of escape
of monomers or bits of mass is negligible compared to
the rate of surface diffusion making aggregation an ir-
reversible process [13,14]. Thus by elimination, the ob-
served bimodal distribution of Figure 2 can be attributed
to the mechanisms of adsorption and irreversible aggrega-
tion which dominate at room temperature.

Typical aggregation mechanisms observed in the con-
text of coalescence phenomena are those of Ostwald ripen-
ing and/or cluster migration [15]. In Ostwald ripening,
the larger particles grow or “ripen” at the expense of the
smaller ones due to their desire to minimize the surface
free energy. In cluster migration on the other hand, coa-
lescence occurs as a result of collision of particles as they
execute a random walk on the substrate. It is difficult to
distinguish Ostwald ripening from cluster mobility coa-
lescence in experiments. However, their presence is char-
acterized by (a) an increased mean volume of particles,
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(b) a decreased density or coverage of the substrate and
(c) a broadening of the particle size distribution. Each of
these features are indeed observed in Figure 2, strength-
ening our belief of adsorption and mass-dependent diffu-
sion being the two major contributors towards growth of
Pb1−xFexS nanoparticles. The inset of Figure 2 depicts
the effect of increasing pH on N(m), the number of parti-
cles of size m. This information was obtained in our earlier
study from the same set of TEM images which have been
used to obtain the point particle representations of Fig-
ures 1a–1c [9]. The main effect of increasing the pH of
the chemical bath, as observed from the inset of Figure 2,
is to broaden the distributions and increase the average
size mav. Recalling that its role is to provide S−2 ions for
the formation of Pb1−xFexS monomers on the substrate,
the pH may be identified with an adsorption rate in a
deposition experiment. Naively, one expects the average
inter-particle separation to decrease with increasing ad-
sorption rate due to an enhanced particle density on the
substrate. However, the data of Figure 2 suggests that the
additional monomer adsorption is counterbalanced by mi-
croscopic growth moves which create large, well separated
particles.

We now address the main issue of this paper, namely
that of scaling in the nanoparticle films obtained under
different growth conditions. To do this, we construct C(r)
which is the conditional probability of finding a particle
of any size at a distance less than or equal to r. The rea-
sons for using C(r) rather than P (r) to probe scaling is
because the former has been found to be more suitable
to obtain information about (i) depletion of concentration
of pairs of particles with small separation as compared
to rav, (ii) the cross-over behavior to large separation and
(iii) to demonstrate scaling with respect to rav [14,18]. We
postulate the following scaling ansatz for the cumulative
separation distributions corresponding to different values
of pH:

C(r) =
1

rav
f

(
r

rav

)
. (1)

It satisfies the requirements of normalization and f(0) is
0 while f(x→ ∞) → 1. Equation (1) implies that a plot
of ravC(r) as a function of r/rav should bring about a
collapse of the distributions corresponding to different pH
values onto a universal curve in case the data exhibit scal-
ing. This is indeed true, as seen in Figure 3, implying that
the only relevant variable for determining the above distri-
butions is rav. The corresponding unscaled data are shown
in the inset.

Some comments regarding the scaling ansatz of equa-
tion (1) are in order. A rate equation analysis for the pro-
posed theoretical description of the growth phenomena in
I was carried out by Krapivsky et al. within a mean field
approximation [16,17]. Steady state particle-size distribu-
tions were obtained which exhibited scaling with respect
to the incident flux. The features related to spatial distri-
bution however are hard to incorporate in a rate equation
treatment making it difficult to predict a scaling function
for the distributions P (r) or C(r) [18]. The usual course
then is to postulate a scaling form for the separation distri-
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Fig. 3. Scaled cumulative separation distribution described by
equation (1) for the three values of pH considered. The inset
shows the corresponding unscaled data.

bution on the basis of heuristic arguments. Another form
given by C(r) = N−1 f (r/rav) proposed in [18] was found
to be useful in scaling of separation distributions of Iron
islands in the initial stages of growth [14]. Here N repre-
sented the total number of particles excluding monomers
and the scaling ansatz was used to collapse data corre-
sponding to different temperatures. This was observed in
the context of Iron-on-Iron depositions at different tem-
peratures [14]

4 Self-similarity and the fractal dimension

The self-similarity in the deposited films corresponding to
different pH values can be easily checked by appropriate
dilations of Figures 1b and 1c corresponding to pH = 10.0
and 10.75 respectively in order to view them on the same
length scale as that of Figure 1a which corresponds to a
pH value of 9.25. Thus the required dilation for Figures 1b
and 1c are 1.6 and 2.5 respectively. The dilated images
are shown in Figures 4a and 4c. With this, the scales of
Figures 1a, 4a and 4c corresponding to pH = 9.25, 10.0
and 10.75 respectively are identical. The statistical self-
similarity in these sets of figures is notable. Similarly, a
magnification by a factor of 1.5 of Figure 1c correspond-
ing to pH = 10.75 yields an image bearing the same scale
as Figure 1b which corresponds to pH = 10.0. The mag-
nified image is shown in Figure 4b. Here again, we can
observe the statistical self-similarity between the two im-
ages. At this juncture, we remind the reader of the com-
ments related to Figure 2 regarding the invariance of inter-
particle separation distributions with pH. The statistical
self-similarity in the images discussed above makes this
invariance evident.

An alternative procedure could be to determine the
correlation dimension dc of an attractor responding to
the growth process [21]. To do so, we first need to de-
fine the correlation sum ˜C(r). Traditionally, it is obtained
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Fig. 4. Dilated portions (lower right corner) of Figures 1b and 1c. The scales in the images are to be noted and appropriate
pH values are to be compared with those in Figure 1 (refer text in Sect. 4).

by considering correlations between points of a long time-
series. denoting the N points of such a time series by
�Xi = �X(t + iτ), where τ is an arbitrary but fixed in-
crement. The definition of the correlation sum is:

˜C(r) =
1

N2

N∑
i,j=1

Θ
(
r− | �Xi − �Xj |

)
, (2)

where Θ is a Heaviside function, r is the radius of an
n-dimensional hyper sphere centered on each point. The
Heaviside function is equal to unity (zero) if the value in-
side the brackets is positive (negative). Xi is the reference
point and Xj are the other points in the time series. Thus
the Heaviside function counts all points within the hy-
per sphere of radius r. The cumulative sum of all counted
points is then divided by the total number of pairs N2 to
give ˜C(r). The maximum value of ˜C(r) is unity, when r
is greater than the largest distance between two points on
the attractor and hence all pairs are counted. The min-
imum value of ˜C(r) is 2/N2 when only the two closest
points are counted. In case of self-similar structures, ˜C(r)
behaves as a power law of r with a non-integer power which
is the correlation dimension dc:

˜C(r) ∝ rdc (3)

dc is closely related to the Haussdorf dimension and can
be taken as a most useful measure of the local structure of
the attractor [21]. It can be obtained in a straight-forward
fashion from the data in the inset of Figure 3. We show
these data on a double logarithmic scale in Figure 5. The
value of dc from the slope of the best fit line to the central
portion of the data is found to be 1.72± 0.01. This evalu-
ation is yet another test for the presence of self-similarity
in the non-equilibrium growing structure for the low flux
rates considered during deposition.
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Fig. 5. The correlation sum defined by equation (2)
on a double logarithmic scale. The correlation dimension
dc = 1.72 ± 0.01 is given by the slope of the best-fit (dashed)
line.

5 Conclusion

In conclusion, we have probed the presence of scaling and
self-similarity in the non-equilibrium growth process of
Pb1−xFexS nanoparticle films obtained at room temper-
ature for different values of the incident monomer flux.
The distributions corresponding to inter-particle separa-
tions are observed to be bimodal. We attribute this form to
the presence of two dominant mechanisms contributing to
growth viz., adsorption of monomers and their subsequent
diffusion and aggregation. The main effect of increasing
monomer flux is to increase the average inter-particle sep-
aration and broaden the distributions. This is understood
by proposing the aggregation mechanism to be a akin to
Ostwald ripening and cluster migration typically discussed
in the context of coalescence phenomena. The cumulative
probability distributions were seen to exhibit scaling, in-
dicating the absence of characteristic length scales as well
as time scales for the experimental conditions of low flux
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rates and short deposition times. We also addressed the is-
sue of self-similarity. Due to the stochastic nature of both,
the adsorption and the diffusion process, the growth pro-
cess leading to the formation of nanoparticle films is self-
similar. We checked this by two procedures. The first one
used concepts of scaling while the second one involved
the calculation of fractal dimension. We conclude from
these analyses that the growth process is self-similar for
low flux rates and short deposition times thereby allow-
ing the particles to diffuse on the substrate in the form of
a Brownian walk. The substrate temperature is expected
to play an important role on this issue as it features in
the diffusion rates of particles [4]. For instance at very
low temperatures monomer adsorption will be the only
mechanism of growth. Finally although we have studied
a specific system viz., Pb1−xFexS nanoparticle films for
clarity of procedures, the analyses are generic and can be
applied to a variety of systems obtained using different
deposition techniques.

I thank R. Ramaswamy for useful inputs in the evaluation of
the correlation dimension. I am also thankful to L.K. Malhotra
for critical comments on the manuscript.
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